A cubically convergent class of root finding iterative methods

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A cubically convergent class of root finding iterative methods

In this paper, we propose a new two-parameter class of iterative methods to solve a nonlinear equation. It is proved that any method in this class is cubically convergent if and only if the parameters sum up to one. Some of the existing third-order methods, by suitable selection of parameters, can be put in this class. Every iteration of the class requires an evaluation of the function, three o...

متن کامل

On a Cubically Convergent Iterative Method for Matrix Sign

We propose an iterative method for finding matrix sign function. It is shown that the scheme has global behavior with cubical rate of convergence. Examples are included to show the applicability and efficiency of the proposed scheme and its reciprocal.

متن کامل

Point Estimation of Cubically Convergent Root Finding Method of Weierstrass’ Type

The aim of this paper is to state initial conditions for the safe and fast convergence of the simultaneous method of Weierstrass’ type for finding simple zeros of algebraic polynomial. This conditions are computationally verifiable and they depend only on the available data polynomial coefficients, its degree and initial approximations z 1 , . . . , z (0) n to the zeros. It is shown that under ...

متن کامل

A Family of Cubically Convergent Methods for Solving Nonlinear Equations

Ujević et al. introduced a family of methods for solving nonlinear equations in [7]. For certain choices of parameters, firstly, they showed that the classical Newton’s method is a member of this family and their methods are better than classical Newton’s method. Then they introduced a particular method. However, in most cases, their efficiency is worse than classical Newton’s method. This is t...

متن کامل

Cubically Convergent Iterations for Invariant

We propose a Newton-like iteration that evolves on the set of fixed dimensional subspaces of Rn and converges locally cubically to the invariant subspaces of a symmetric matrix. This iteration is compared in terms of numerical cost and global behavior with three other methods that display the same property of cubic convergence. Moreover, we consider heuristics that greatly improve the global be...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: African Journal of Mathematics and Computer Science Research

سال: 2014

ISSN: 2006-9731

DOI: 10.5897/ajmcsr12.036